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Abstract

In this paper athree dimensional model, which describes the development of output,
interest rate and money supply in a closed economy is analysed.

We find the sufficient conditions for the existence of equilibrium, its stability and the
existence of business cycles. Formulae for the calculation of bifurcation coefficients are derived
for specific forms of functions in the model. Also the stability of business cycles is examined.
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Introduction
In [4] there was analyzed the following macroeconomic model with pure money financing
(also called Schinasi’s Business Cycle Model, see [5])

Y =afI(Y,R)+G—S(Y?)-T(Y)]
R=B[L(Y,R)— L] (1
Ly =G-T(Y),

where Y - output, R - interest rate, Lg- money supply, | - investments, S - savings, G - constant
government expenditures, T - tax collections, L- money demand, « , - positive parameters,

t- time and

YDy —T(Y), y-d g dR 5 _ds
dt dt dt
In this paper we shall treat the function S as the function of two variables Y° and R. Thus we
realize the function S in the model (1) as S = S(Y°,R) instead of S =S(Y°).

The economic properties of the functions in (1) are expressed by the following partial derivatives:
D D
AR o AR BS(YP.R) ( aSYELR)
oY oR oY R
aT(Y) -0, oL(Y,R) -0, oL(Y,R) <o )
oY oY R

The functions I, S, T, L in (1) were considered in general form assuming only that they had
continuous derivatives up to the fifth order in the domain M ={(Y,R):Y >0, R > 0}.

b

In [4] there was proved the existence of limit cycles in the model (1). These results were
generalized in [7]. In this paper we shall investigate the stability of cycles. The contribution starts
with some complementary statements and their proofs.

Analysis of the model
In the following theorem a sufficient condition for the existence of an isolated equilibrium

E* of the model (1) is presented.



Theorem 1. Suppose that T(0) <G and 1(Y",0) > S(Y*,0), where the value Y " is determined by
the relation T(Y°)=G. Then there exists the unique equilibrium E*=(Y*,R",Ls"), Y" >0,
R*>0, Ls" >0 of the model (1).

Proof. From the third equation it follows that at equilibrium E" =(Y",R",Ls") the equation
G-T(Y")=0 is satisfied. The function T 1is increasing and if T(0)<G the equation
G-T(Y")=0 determines the unique positive equilibrium value Y*, Y* >0. Taking this into
account we get from the first equation that 1(Y",R™) =S(Y",R") must be satisfied. This equation
has a unique positive solution R* in the power of the facts that I, <0, S; >0 and functions
|,S satisfy the condition 1(Y°,0) > S(Y",0), where the value Y° is the equilibrium value Y*.

The positive equilibrium value Lg" is determined by the equation L(Y*,R*)~Lg" =0.0

Henceforward we shall assume in the whole paper that the functions T, L are linear and
the functions |, S are nonlinear of the partial Kaldor’s form ([2]). We suggest the following
forms of the functions:

T(Y)=t, +t,Y,
L(Y,R) =1, +1,Y =I,R
L(Y,R) =iy +i,+Y —i,R,
S(YP.R)=s,+5, (YO F +5,R, YO =Y -T(Y),
where t,, I, |,, i;, i,, s;, s, are positive constants. After these functions' specification the model
(1) takes the form
Y:aky$7+bv2+hv—a2+%)R+%
R=p0Y-1L,R+I,-Lg] (3)
L =Y +G —t,,
where k; =i,
k, ==s,(1-1))%,
ki =2ts,(1-t) -,

kO :iO_SO_tO_Slt02+G .

Utilizing Theorem 1 we shall find a sufficient condition for the existence of an isolated
equilibrium of (3).

G-t,

Lemma 1. If the inequalities G—t, >0, j +i G-t >So+31(
t

1

2
GJ are satisfied then the

1

model (3) has an isolated equilibrium point E* =(Y*,R*,Ls"), Y* >0, R*>0, Ls* >0.

Consider an isolated equilibrium E* =(Y",R",Ls") of (3). After the transformation
Y, =Y-Y", R =R-R", Lg, =Ls - Lg",
the equilibrium E* shifts into the origin E,” =(Y," =0,R,” =0,Lg,” =0) and the model (3) takes
the form



Y :a[km/Yl +Y 5 Ko (Y +Y )k (Y, +Y )= (i, +5,)(R, + R*)+k0}
R:ﬂ[ll(Yl+Y*)—|2(R1+R*)+|0—L51—LS*] 4)
Lg =—t,(Y, +Y*)+G —t,.
Performing Taylor expansion of the functions on the right-hand side of this system at the
equilibrium E;" =(0,0,0) we get the model
Y, = al(By, —t)Y; — (i, +5,)R ]+, (Y. R, @)

Ri =AY, ~LhR, —Lg] 5)
Ls1:—t1Yls
where BYI:E(Yl*,Rl*):'—1—251(1—t1)(\(*(1—t1)—t0) and the function Y, contains
6Y1 Z,IY*

corresponding nonlinear terms.

The linear approximation matrix of (5) is
aBy, -t) —a(i, +s,) 0
Aa, B) = A, -pl, -pB| (6)
-t 0 0
The characteristic equation of A(a,s) is
2 +a(a, HV +a,(a, BA+a,(a, f) =0, (7)
where a, =a(t, - By;)+ A,
a, = af((iy +s)l; +(t; —Bypl,),
az =apt (i, +5,).

Stability of E,” is ensured by the Routh-Hurwitz conditions:
a>0,a,>0,aa —-a,;>0.

i]
- >0, (8)
20y
the conditions a, >0, a, > 0 are satisfied. The inequality a,a, —a, >0 is satisfied if
S t (i, +s,) Bl ' )
(t - BYI)(Il(iZ +8,) + Iz(tl - BYI)) t - BYI

If t-B, >0 & t+2s,(t Dt + DY)

Theorem 2. Take parameter £ at any positive level. If conditions (8) and (9) hold, all

eigenvalues of matrix A have negative real parts. Hence the equilibrium E,” of the model (5) is

asymptotically stable and the same result holds for the equilibrium point E* of the model (3).

Now we are dealing with the question of the existence of cycles in the model (3).
Accordingly we need to find such values of parameters «, 3, at which the equation (7) has a pair

of purely imaginary eigenvalues and the rest one is real and negative. We shall call such values of

parameters «,f as critical values of the equation (7). We denote the critical values as «,, g, .

Mentioned types of eigenvalues are ensured by the Liu's conditions ([3]):
a>0,a,>0,aa,-a,=0. (10)

The first two inequalities are satisfied with condition (8). The condition a,a, —a, =0 implies that
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(ll(iz +8)+ 1 () - BYI))(ﬁIZ +a(t - BYI))_tl(iz +5,)=0.

As we are interested in positive critical values, take g e [0’ : t (i, + 522) J and denote it
L1, (i, +5,)+1,°(t = By)
as critical value g,. Then critical value «, is a positive number
_ ti(is +52) = Bola (1 (i, +55) + 15 (t =By)))
(t =By )Gz +5) + 1, (t, = Byy))
Thus for given specific value of 3, it is always possible to find corresponding value of «, so that

0

a pair (a,,/,) is a critical pair of the equation (7) and of the model (5).

Lemma 2. Let the condition (8) holds and let (o,,5,) be a critical pair of the model (5). Then at

every a > a, the equilibrium E,” is asymptotically stable and at every a < «, the equilibrium E,
is unstable.

Proof. @~ We can  rewrite  the  condition aa,—-a,=0 in the form

= _ L@, + 522) _&-By) a =q+ka » which is the linear function with a variable
L@, +s,)+1,°(t, - By,) I,

a . Let assume the condition (8) holds. Then constant q is positive and slope K is negative, so

the function is decreasing and passing through the first quadrant (see Fig. 1).
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Figure 1.

Treat the parameter f = 3, € (O,q) as fixed. For a > a, we get a,a,—a, >0 and for a <« is
a,a, —a, < 0. Using the Routh-Hurwitz stability conditions we get the assertion of the Lemma 2.
(]

To gain the bifurcation equation of the model (5) it is suitable to transform (5) to its partial
normal form on invariant surface. After the shift of «, into the origin by relation ¢, =a - «, the

model (5) takes the form

. . . 4 4

Y, = a,[(B,, —t)Y, = (i, +5,)R 1+ (B,, =t &, — (i, +5,)R e, + >3, Y, +> a3, Y,* +0(\Y]\5)
k=2 k=2

Rl ::BO[IIYI_IZRI _le] (11)

LS1 :_tlYl’

5i,

where a, =-s,(1-t,)> -



Consider the matrix M which transfers the matrix A(e,, £,) into its Jordan form J. Then the

transformation x =M.y, X= (Yl, R, L, )T , Y= (Yz, R,,Ls, )T takes the model (11) into the model

Yz =AY, +F(Y2,Ry, Lsp, )
R, =A4LR, +F(Yy, Ry, Lsy,ay) (12)
Ls, = 43Lsy + F5(Y2, Ry, Lss, ),

where R, =Y,,F, =F, and F, is real (the symbol * - ” means complex conjugate expression in
the whole article).

Theorem 3. There exists a polynomial transformation
Y, =Y;+h(Y;,R;, )
R, =R, +h,(Y;,R;, @) (13)
Ls, = Lgs + (Y5, Ry, ),

where h i (Y3, R;, ), j =1,2,3, are nonlinear polynomials with constant coefficients of the kind

h,(Y;,R,, )= ZV(’“"’“Z"“W}”“ R,™a,™, j=1,2,3, h, =h, with the property

m;,m,,m;

hj(\/;lY3,\/07l R3,al): ZV(mvmz’mx)(\/;1 )kY3mlR3mz,kg4, which transforms the model (12) into its

m;,m; .My

partial normal form on invariant surface

Y'3 =4Y;+0Y3 +52Y32R3 +UO(Y3,R3,Ls3,0fl)+u*0(3,R3,L33,051)
Fé3 = LR +6,Ryer) "‘ngsR32 +UO(Y3,R3,Ls3,a1)+l7*(Y3,R3,L53,a1) (14)
Ly = A3Lgy +V (Y3, Rs, Lgs, ) +V ¥ (Y3, Ry, L3, 1)),

where U°(Y,,R,;,0,¢,)=V"(Y;,R;,0,,)=0 and

U *(\/071Y3’\/071R3’\/071LS33“1):V*(\/;lYp\/;lRw\/;lstal):o(\/a71)5'

The resonant terms J, and o, in the model (14) are determined by the formulae
— azl:l

Y,0a,’
_ 1 °F &R +L82F2 d’F, s o*'F,  0°F,

Ay Y, 0V,0Ry 64y oY,2 AR,2 Ay OY,0R, OY,dR,

1

2

1 o*F 0*F  (-1) 8*F 0°F 1 o'F, 0°F; 1 O°F
+— + + + = ,
24 0,2 Y,0R, Ay OY,0R, Y,0R,  2(24, —A3) ARy0Lg, OY,2 2 Y,%0R,

where all derivatives in &, and &, are calculated at E,” and ¢, = 0.

Proof. Differentiating (13) in the power of (12) and (14) we get the equations for the
determination of the individual terms of the polynomials h i j=12,3, and the resonant terms
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0, ,0, by standard “step by step” procedure. As the whole process of this procedure is rather long
we are omitting it. [

The model (14) takes in polar coordinates Y, = re'”, R, = re™” the form

r= r(ar2 +b0[1)+60(r,(0, L53,(11)+G*(r,$, LS35a1)
: 1 .

. ~0 ~
Ls; = 43Ls3 +Vy (o, Lss,) +V, (1,9, Ls3,0)),

where a=Re?d,, b=Red,.

The behaviour of solutions of the model (15) around its equilibrium for small parameters «,
depends on the signs of the constants a,b. It is known that to every constant solution of the
bifurcation equation ar’® +bea, =0 a periodic solution of (15) corresponds (see [1]).

The following lemma gives a sufficient condition for the negativeness of the coefficient b.

Lemma 3. Let the assumptions of Lemma 2 be satisfied. Let in addition t, +1,1,(«,,4,) <0 holds.
Then the value of the coefficient b is negative.

Proof.  Denote the eigenvalues of (6) as A =r(a.p)+io(a,B), A,=t(a,f)-io(a,p),
4, =4, (a, ) . After substituting these roots into the equation (7) we get
(A-(+im)A-(r-iw)(A-4)=0,
what gives the equation
2 +b,(a, B2 +by(ar, B)A+b,(a, B) =0, (16)
where b =—-(27r+4,),
b, =271, +7° + @’,
b, =—(c> + @) A,.
Comparing the coefficients in (7) with the ones in (16) we gain the equations for 7(«a, 8), w(a, B),
PRCNY
alt, ~B,)+ M, =20+ 4,),
af((i, +8)l, +(t, =By )l,) =224, +7° + o, (17)
apt (i, +s,) =—(t° + @) A,.
Let (a,,5,) be a critical pair of the model (5). Fix B, and consider a neighbourhood
O(ay)=(ag — &,y +&), €>0. It is known that the constant b from the bifurcation equation
ar’ +ba, =0 equals to the derivation of dr(«)/de at the critical values «,,s, (see [6]). Hence
put B, from the critical pair (a,,,) into (17). Derivation of (17) with respect to « at the critical

value ¢, taking into account that 7(a;)=0 gives



dr d4,

Pl =5 =B, -t
da i dee """
dr dw .
2,—+ 20—+ :ﬂo(ll(lz+Sz)+|2(t1_BY1))’
da da
260].3d—w+a)2%=—ﬂotl(i2 +5,).
da da
By Cramer rule we get from this system
dz(ey) _G
da H’

where G =g, (i, +s,)(t, +14)+(t -B, (1,84 —o>) and H =2’ +’). Denominator H is
always positive. If t +14, <0 is satisfied, G is negative. On the base of performed

considerations we can formulate Lemma 3. [J

Analysing the model (15) and taking into account all transformations which have been done
to get (15) we can formulate on the base of Poincaré-Andronov-Hopf bifurcation theorem (see
[6]) the following statement.

Theorem 4. Let the assumptions of Lemma 2 be satisfied. Let in addition t, +1,4,(«,,,) <0 holds.

Then: 1. If a>0 theequilibrium E,” of the model (5) is unstable also at the critical pair
(a,,p,) and to every a >« there exists an unstable limit cycle.

2. If a<0 the equilibrium E,;” of the model (5) is asymptotically stable also at the
critical pair («,,£,) and to every a < «, there exists a stable limit cycle.

Conclusion

In Theorem 1 a sufficient condition for the existence of an isolated equilibrium of the
model (1) is presented. Lemma 1 gives a sufficient condition for the existence of equilibrium of
the model (1) with respect to specific forms of functions occurring in the model.

Theorem 2 uses the Routh-Hurwitz conditions to state the equilibrium stability of (5) and
(3). Lemma 2 solves the question of equilibrium stability in the case of one free parameter on the
specified model (5). It was shown that to an arbitrary parameter S = j, it is always possible to
find a corresponding value of the parameter «, o =«,, such that we are able to answer the
question about equilibrium stability in the interval (e, — &,y + &), £>0.

Theorem 3 gives formulae for the calculation of bifurcation coefficients. The question about

the existence of business cycles and their stability in the model (5) is completely answered by
Theorem 4.
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