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Abstract 
In this paper a three dimensional model, which describes the development of output, 

interest rate and money supply in a closed economy is analysed. 
We find the sufficient conditions for the existence of equilibrium, its stability and the 

existence of business cycles. Formulae for the calculation of bifurcation coefficients are derived 
for specific forms of functions in the model. Also the stability of business cycles is examined.  
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Introduction 

In [4] there was analyzed the following macroeconomic model with pure money financing 
(also called Schinasi’s Business Cycle Model, see [5]) 
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where - output, Y R - interest rate, - money supply, SL I - investments, - savings, - constant 
government  expenditures,    

S G
T - tax collections,  - money demand, L α , β - positive parameters, 

- time and t

)(YTYY D −= ,   
dt
dYY = ,   

dt
dRR = ,   

dt
dL

L S
S = . 

In this paper we shall treat the function  as the function of two variables S DY  and R . Thus we 
realize the function  in the model (1) as  instead of . S ),( RYSS D= )( DYSS =
The economic properties of the functions in (1) are expressed by the following partial derivatives: 
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The functions I , , S T ,   in (1) were considered in general form assuming only that they had 
continuous derivatives up to the fifth order in the domain  

L
{ ,0:),( >= YRYM }0>R .  

 
In [4] there was proved the existence of limit cycles in the model (1). These results were 

generalized in [7]. In this paper we shall investigate the stability of cycles. The contribution starts 
with some complementary statements and their proofs. 
 
Analysis of the model 

In the following theorem a sufficient condition for the existence of an isolated equilibrium 
∗E  of the model (1) is presented. 
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Theorem 1. Suppose that  and , where the value GT <)0( )0,()0,( YSYI > Y  is determined by 

the relation . Then there exists the unique equilibrium ,  
,  of the model (1). 

GYT =)( ),,( ∗∗∗∗ = SLRYE ,0>∗Y

0>∗R 0>∗
SL

 
Proof. From the third equation it follows that at equilibrium  the equation 

 is satisfied. The function 
),,( ∗∗∗∗ = SLRYE

0)( =− ∗YTG T  is increasing and if  the equation 
 determines the unique positive equilibrium value , . Taking this into 

account we get from the first equation that  must be satisfied. This equation 
has a unique positive solution 

GT <)0(

0)( =− ∗YTG ∗Y 0>∗Y
),(),( ∗Y ∗∗∗ = RYSRI

∗R  in the power of the facts that ,0<RI   and  functions 0>RS
I ,  satisfy the condition , where the value S )0,()0,( YSYI > Y  is the equilibrium value . 
The positive equilibrium value  is determined by the equation  

∗Y
∗

SL .0),( =− ∗∗∗
SLRYL

 
Henceforward we shall assume in the whole paper that the functions T ,  are linear and 

the functions 
L

I ,  are nonlinear of the partial Kaldor’s form ([2]). We suggest the following 
forms of the functions: 

S

,)( 10 YttYT +=  
RlYllRYL 210),( −+=  

,),( 210 RiYiiRYI −+=  

( ) ,),( 2
2

10 RsYssRYS DD ++=   ,       )(YTYY D −=

where , , , , , ,  are positive constants. After these functions' specification the model 
(1) takes the form 

1t 1l 2l 1i 2i 1s 2s
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where     ,13 ik =

               ,)1( 2
112 tsk −−=

              , 11101 )1(2 ttstk −−=

   . Gtstsik +−−−= 2
010000

 
Utilizing Theorem 1 we shall find a sufficient condition for the existence of an isolated 

equilibrium of (3). 

Lemma 1. If  the inequalities  , 00 >− tG
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model (3) has an isolated equilibrium point ,  , . ),,( ∗∗∗∗ = SLRYE ,0>∗Y 0>∗R 0>∗
SL

 
Consider an isolated equilibrium  of  (3). After the transformation  ),,( ∗∗∗∗ = SLRYE

∗−= YYY1 , , , ∗−= RRR1
∗−= SSS LLL 1

the equilibrium ∗E  shifts into the origin  and the model (3) takes 
the form 

)0,0,0( 1111 ==== ∗∗∗∗
SLRYE
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Performing Taylor expansion of the functions on the right-hand side of this system at the 
equilibrium  we get the model )0,0,0(1 =∗E
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where ( )0111
1

11
1

1 )1()1(2
2

),( ttYts
Y

i
RY

Y
BBY −−−−=

∂
∂

= ∗

∗

∗∗  and the function 1
~Y  contains 

corresponding nonlinear terms. 
 

The linear approximation matrix of  (5)  is 

A =),( βα .
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The characteristic equation of  A ),( βα   is 
,0),(),(),( 32

2
1

3 =+++ βαλβαλβαλ aaa    (7) 
where   ,)( 2111 lBta Y βα +−=  

 ),)()(( 2111222 lBtlsia Y−++= αβ  
 ).( 2213 sita += αβ  
 

Stability of  is ensured by the Routh-Hurwitz conditions: ∗
1E

01 >a , , 03 >a 0321 >− aaa . 

If                ⇔>− 011 YBt ( ) 0
2
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Y
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the conditions ,  are satisfied.  The inequality 01 >a 03 >a 0321 >− aaa  is satisfied if 
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Theorem 2. Take parameter β  at any positive level. If conditions (8) and (9) hold, all 

eigenvalues of matrix A have negative real parts. Hence the equilibrium  of the model (5) is 
asymptotically stable and the same result holds for the equilibrium point 

∗
1E
∗E  of the model (3). 

 
Now we are dealing with the question of the existence of cycles in the model (3). 

Accordingly we need to find such values of parameters ,, βα  at which the equation (7) has a pair 
of purely imaginary eigenvalues and the rest one is real and negative. We shall call such values of 
parameters βα ,  as critical values of the equation (7). We denote the critical values as 00 , βα . 
Mentioned types of eigenvalues are ensured by the Liu's conditions ([3]): 

01 >a , , 03 >a 0321 =− aaa .        (10) 
The first two inequalities are satisfied with condition (8). The condition  implies that  0321 =− aaa
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Thus for given specific value of 0β  it is always possible to find corresponding value of 0α  so that 
a pair ( 00 , )βα  is a critical pair of the equation (7) and of the model (5).  
 
Lemma 2. Let the condition (8) holds and let ( )00 ,βα  be a critical pair of the model (5). Then at 
every 0αα >  the equilibrium  is asymptotically stable and at every ∗

1E 0αα <  the equilibrium   
is unstable. 

∗
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Proof. We can rewrite the condition 0321 =− aaa  in the form 
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α . Let assume the condition (8) holds. Then constant  is positive and slope  is negative, so 
the function is decreasing and passing through the first quadrant (see Fig. 1). 
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Figure 1. 

 
Treat the parameter ( q,00 ∈ )= ββ  as fixed. For 0αα >  we get 0321 >− aaa  and for 0αα <  is 

. Using the Routh-Hurwitz stability conditions we get the assertion of the Lemma 2. 
 

0321 <− aaa

 
To gain the bifurcation equation of the model (5) it is suitable to transform (5) to its partial 

normal form on invariant surface. After the shift of  0α  into the origin by relation 01 ααα −=  the 
model (5) takes the form 
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Consider the matrix M which transfers the matrix A ),( 00 βα  into its Jordan form J. Then the 

transformation  , , yMx .= ( )TSLRYx 111 ,,= ( )TSLRYy 222 ,,=  takes the model (11) into the model 
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where ,, 1222 FFYR ==  and  is real (the symbol “ - ” means complex conjugate expression in 
the whole article). 
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Theorem 3. There exists a polynomial transformation  
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where ( ) ,3,2,1,,, 133 =jRYhj α  are nonlinear polynomials with constant coefficients of the kind 
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partial normal form on invariant surface 
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The resonant terms 1δ  and 2δ  in the model (14) are determined by the formulae 
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where all derivatives in 1δ  and 2δ  are calculated at  and  ∗

1E .01 =α
 
Proof.  Differentiating (13) in the power of (12) and (14) we get the equations for the 

determination of the individual terms of the polynomials ,3,2,1, =jh j  and the resonant terms 
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1δ , 2δ  by standard “step by step” procedure. As the whole process of this procedure is rather long 
we are omitting it.  

 
The model (14) takes in polar coordinates   the form ϕϕ ii reRreY −== 33 ,
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where .Re,Re 12 δδ == ba  

The behaviour of solutions of the model (15) around its equilibrium for small parameters  
depends on the signs of the constants  It is known that to every constant solution of the 
bifurcation equation  a periodic solution of (15) corresponds (see [1]). 

1α
.,ba

01
2 =+ αbar

The following lemma gives a sufficient condition for the negativeness of the coefficient  .b
 

Lemma 3. Let the assumptions of Lemma 2 be satisfied. Let in addition 0),( 00311 <+ βαλlt  holds. 
Then the value of the coefficient b  is negative.  

 
Proof.  Denote the eigenvalues of (6) as , , ),(),(1 βαωβατλ i+= ),(),(2 βαωβατλ i−=

),(33 βαλλ = . After substituting these roots into the equation (7) we get 
( )( ) 0)()()( 3 =−−−+− λλωτλωτλ ii , 

what gives the equation 
,0),(),(),( 32
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where        ),2( 31 λτ +−=b  

    ,2 22
32 ωττλ ++=b
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22
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Comparing the coefficients in (7) with the ones in (16) we gain the equations for ),( βατ , ),( βαω , 

),(3 βαλ : 
),2()( 3211 λτβα +−=+− lBt Y  

,2))()(( 22
3211122 ωττλαβ ++=−++ lBtlsi Y       (17) 

.)()( 3
22

221 λωταβ +−=+ sit     
Let ( 00 , )βα  be a critical pair of the model (5). Fix 0β  and consider a neighbourhood 

),()( 000 εαεαα +−=O , .0>ε  It is known that the constant b  from the bifurcation equation 
 equals to the derivation of 01

2 =+ αbar αατ dd /)(  at the critical values 00 ,βα  (see [6]). Hence 
put 0β  from the critical pair ( 00 , )βα  into (17). Derivation of (17) with respect to α  at the critical 
value 0α  taking into account that 0)( 0 =ατ  gives 
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By Cramer rule we get from this system 
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where     and    Denominator ))(())(( 2
30211311220 ωλβλβ −−+++= lBtltsiG Y ).(2 22

3 ωλ +=H H  is 
always positive. If  0311 <+ λlt  is satisfied, G  is negative. On the base of performed 
considerations we can formulate Lemma 3.  

 
Analysing the model (15) and taking into account all transformations which have been done 

to get (15) we can formulate on the base of Poincaré-Andronov-Hopf bifurcation theorem (see 
[6]) the following statement. 

 
Theorem 4. Let the assumptions of Lemma 2 be satisfied. Let in addition 0),( 00311 <+ βαλlt  holds. 

Then:  1.   If   the equilibrium  of the model (5) is unstable also at the critical pair 0>a ∗
1E

                ( 00 , )βα  and to every 0αα >  there exists an unstable limit cycle. 

2. If  the equilibrium  of the model (5) is asymptotically stable also at the 
critical pair 

0<a ∗
1E

( )00 ,βα  and to every 0αα <  there exists a stable limit cycle. 
 
Conclusion 

In Theorem 1 a sufficient condition for the existence of an isolated equilibrium of the 
model (1) is presented. Lemma 1 gives a sufficient condition for the existence of equilibrium of 
the model (1) with respect to specific forms of functions occurring in the model.  

Theorem 2 uses the Routh-Hurwitz conditions to state the equilibrium stability of (5) and 
(3). Lemma 2 solves the question of equilibrium stability in the case of one free parameter on the 
specified model (5). It was shown that to an arbitrary parameter 0ββ =  it is always possible to 
find a corresponding value of the parameter α , 0αα = , such that we are able to answer the 
question about equilibrium stability in the interval ( )εαεα +− 00 , , 0>ε . 

Theorem 3 gives formulae for the calculation of bifurcation coefficients. The question about 
the existence of business cycles and their stability in the model (5) is completely answered by 
Theorem 4. 
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