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Introduction 

A observation that is substantially different from all other ones can make a large difference in the 
results of regression analysis. Outliers occur very frequently in real data, and they often go unnoticed 
because nowadays much data is processed by computers, without careful inspection or screening. Outliers 
may be a result of keypunch errors, misplaced decimal points, recording or transmission errors, exceptional 
phenomena such as earthquakes or strikes, or members of a different population slipping into the sample. 

Outliers and leverage 
Outliers play important role in regression. It is common practice to distinguish between two types 

of outliers. Outliers in the response variable represent model failure. Such observations are called outliers. 
Outliers with respect to the predictors are called leverage points. They can affect the regression model, 
too. Their response variables need not be outliers. 

 In regression it helps to make a distinction between two types of leverage points: good and bad. A 
good leverage point is a point that is unusually large or small among the X values but is not a regression 
outlier. That is, the point is relatively removed from the bulk of the observation but reasonably close to the 
line around which most of the points are centered. A good leverage point has limited effect on giving a 
distorted view of how majority of points are associated. Good leverage points improve the precision of the 
regression coefficients. 

A bad leverage point is a point situated far from the regression line around which the bulk of the 
points are centered. Said another way, a bad leverage point is a regression outlier that has an X value that is 
an outlier among X values as well (it is relatively far removed from the regression line). Bad leverage point 
has grossly effect estimate of the slope of the regression line if an estimator with a small breakdown point 
is used.  Bad leverage points reduce the precision of the regression coefficients.  

Outliers are always identified with respect to a specific benchmark or null model. Numerous 
difficulties can arise during the outlier identification stage. The most notorious one is the masking effect. If 
there are several outliers grouped close together in a region of the sample space far away from the bulk of 
the data, most nonrobust outlier detection methods fail to identify these observation as outliers. In other 
words, the outliers mask one onother. Leverage points do not necessarily correspond to outliers.  

 Observations whose inclusion or exclusion result in substantial changes in the fitted model 
(coefficients, fitted values) are said to be influential.  

We are mostly concerned with regression outliers, that is, cases for which 
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pk k kx x y deviates from the linear relation followed by the majority of the data, taking into account 

both the explanatory variable and the response variable simultaneously. A leverage point is then still 
defined as a point 
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data set. 
 
Detecting Influential Observations 
 

Many numerical and graphic diagnostics for detecting outliers and influential cases on the fit have 
been suggested.  

Numerical diagnostics 

 Diagnostics are certain quantities computed from the data with the purpose of pinpointing 
influential points, after which these outliers can be removed or corrected. When there are only one a single 
outlier, some of these methods work quite well by looking at the effect of deleting one point at a time. 



Unfortunately, it is much more difficult to diagnose outliers when there are several of them, and 
diagnostics for such multiple outliers are quite involved and often give rise to extensive computation.  

The robust regression is extremely useful in identifying outliers. The least median of squares 
(LMS) procedure and the least trimmed squares (LTS) regression are reliable data analytic tools that may be 
used to discover regression outliers both in simple and  multivariate situations. Certain robust methods can 
withstand leverage points, whereas others cannot, and that some diagnostics allow us to detect multiple 
outliers, whereas others are easily masked. 

For identifying outliers and leverage points some measures can be used. 

Rousseeuw and van Zomeren (1990) suggest using the LMS estimator to detect regression outliers 
.This  method begins by computing the residuals associated with LMS regression  
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where rM  is the median of 2 2
1 ,..., nr r , the squared residuals, p is the number of predictors. 

The point 1( , ,..., )i i ipy x x  is labeled a regression outlier if the corresponding standardized residual 
is large. In particular, Rousseeuw and van Zomeren label the i-th vector a regression outlier if 
( / ) 2.5ir s > .    

The ordinary or simple residuals (observed - predicted values) are the most commonly used 
measures for detecting outliers. 

Standardized Residuals are the residuals divided by the estimates of their standard errors. They 
have mean 0 and standard deviation 1. There are two common ways to calculate the standardized residual 
for the i-th observation. Studentized residuals are a type  of standardized residuals that can be used to 
identify outliers. One uses the residual mean square error from the model fitted to the full dataset 
(internally studentized residuals). The other uses the residual mean square error from the model fitted to the 
all of the data except the i-th observation (externally studentized residuals). The externally standardized 
residuals follow at t distribution with n-p-2 df.  

The studentized residuals are a first means for identifying outliesrs. Attention should be paid to 
studentized residuals that exceed +2 or -2 and get even more concerned about residuals that exceed 2  and 

even yet more concerned about residuals that exceed 3 . 

Now lets look at the leverage’s to identify observations that will have potential great influence on 
regression coefficient estimates. Generally, a point with leverage greater than (2k+2)/n should be carefully 
examined, where k is the numer of predictors and n is the number of observations. (In our example this 
works out to (2.4+2)/28=0.35.) 

 Some measures combine information on the residuals and leverage and they are general measures 
of influence. 

The robust distance is defined as 

1( ) [ ] [ ]T
i i iRD x x X−= − −T(X) C(X) T(X)                (2) 

where T(X) and C(X) are the robust location and scatter matrix for the multivariates.  

One classical method to identify leverage points is inspects the use of the Mahalanobis distances 
MDi to find outliers xi:  

1( ). ( )T
i i iMD x xµ µ−= − −C                 (3) 

where C is the classical sample covariance matrix. In classical linear regression, the diagonal elements hii 
of the hat matrix 

H = X(XTX)-1XT                    (4) 



are used to identify leverage points. The i-th leverage i iih H=  is the i-th diagonal element of the hat matrix 
H. Rousseeuw and Van Zomeren (1990) report the following monotone relationship between the hii and 
MDi  

hii = [((MDi)2)/(n-1)] + [1/n]                   (5) 
 
and point out that neither the MDi nor the hii are entirely safe for detecting leverage points reliably. 
Multiple outliers do not necessarily have large MDi values because of the masking effect.  

Rousseeuw and Leroy (1987) suggest using 2 /ih p n>  and 2 2
1;0.95i pMD χ −>  as benchmarks for 

leverages and Mahalanobis distances. 
  
The  Cook´s distance is defined 

2 1
( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( )T
i i iCD pσ −= − −Y Y Y Y                  (6) 

where 2σ  is estimator of the error variance 
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Cook's distance for the i-th observation is based on the differences between the predicted 
responses from the model constructed from all of the data and the predicted responses from the model 
constructed by setting the i-th observation aside. For each observation, the sum of squared residuals is 
divided by (p+1) times the Residual Mean Square from the full model. Some analysts suggest investigating 
observations for which Cook's distance is greater than 0.5. The lowest value that Cook's D can assume is 
zero. The conventional cut-off point is 4/n.  

Generally, when the statistics ,i iCD h  and iMD  are large, case i may be an outlier or influential 
case. 

Cook’s distance, leverages, and Mahalanobis distance can be effective for finding influential cases 
when a single outlier exist, but can fail if there are two or more outliers. Nevertheless, these numerical 
diagnostics combined with plots such as residuals versus fitted values and fitted values versus the response 
are probably the most effective techniques for detecting cases that affect the fitted values when the multiple 
linear regression model is a good approximation for the bulk of the data. 

DFITSi is the scaled difference between the predicted responses from the model constructed from 
all of the data and the predicted responses from the model construced by setting the i-th observation aside. 
It is similar to Cook's distance. Unlike Cook's distance, it does not look at all of the predicted values with 
the i-th observation set aside. Some analysts suggest investigating observations for which |DFITSi| is 
greater than 2 ( 1) /( 1)p n p+ − − . Cook's D and DFITS give  similar answers.  

 
Graphic diagnostics 

In the simple regression model, one can make a plot of the ( , )i ix y , which is called a scatterplot, 
in order to visualize the data structure. Many people will argue that regression outliers can be discovered 
by looking at the least squares residuals. Unfortunately, this is not true when the outliers are leverage 
points. If one would apply a rule like “delete the points with largest LS residuals”, then the “good” points 
would have to be deleted first. Often, influential points remain hidden, because they do not always show up 
in the usual LS residual plot. 

LS fit can masks the bad points. The LS residuals associated with outliers even may lie within a 
horizontal band. Because of this effect, the interpretation of a residual plot corresponding to the LS 
estimator is dangerous. Residual plots corresponding to robust estimators (LMS or LTS) are even more 
useful in problems with several variables. 

A scatter plot of x versus y is used to visualize the conditional distribution y|x. For the simple 
linear regression model, by far the most effective technique for checking the assumption of the model is to 
make a scatterplot of x versus Y and residual plot of x versus ir . Departure from linearity in the 
scatterplot suggests the simple linear regression model is not adequate. Points in the residual plot should 
scatter about the line r = 0 with the pattern. If curvature is present or if the distribution of the residuals 
depends on the value of x, then the simple linear model is not adequate. 



 In the multiple regression model with large p it is not sufficient to look at each variable separately 
or even at all plots of pairs of variables. The identification of outlying 
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pi ix x is more difficult 

problem.  

To vizualize outliers and leverage points several plots can be used: 

- a residual plot is a plot of a variable iW  versus the residuals ir . Typically iW  is a linear combination of 
the predictors. 

- a  forward response plot is a scatterplot of the fitted values îY  versus the response iY . 

- a regression diagnostic plot is a plot of the standardized residuals of robust regression (LMS or LTS) 
versus the robust distances RDi proposed by Rousseeuw and Van Zomeren (1990). Two horizontal lines 
corresponding to residual values of +2.5 and -2.5 are useful to distinguish between small and large 
residuals, and one vertical line corresponding to the 2

;0.975nχ  is used to distinguish between small and 
large distances. 

- a plot of the standardized residuals versus their index, 

- a plot of the standardized residuals versus fitted values,  

- a Normal Q-Q plot of the standardized residuals,  

- a Distance-Distance plot, introduced by Rousseeuw and van Zomeren (1990), displays the robust 
distances versus the classical Mahalanobis distances. The horizontal and vertical lines are drawn at values 
equal to the cutoff which defaults 2

,0.975nχ . Points beyond these lines can be considered outliers.  

- a leverage versus residual-squared plot shows the leverage by the residual squared and looks for 
observations that are simultaneously high on both of these measures. An observation that both has a large 
residual and large leverage is potentially the most influential.  Using residual squared instead of residual 
itself, the graph is restricted to the first quadrant and the relative positions of data points are preserved. 
This is a quick way of checking potential influential observations and outliers at the same time. 

Example 
The data set contains information on 28 members and candidate countries of the EU (year 2002) 

where the response variable is internet users per 100 population (y) and the regressors are: GDP per capita 
in PPS ( 1x ), gross domestic expenditure on research and development in per cent ( 2x ), total youth 
educational attainment level  ( 3x ), expenditure on information technology as % of GDP ( 4x ). Source of 
data: Eurostat, CSU.The results were obtained using statistical software packages SAS 9.1 and S-Plus 6.2.  

 As the first step each regressor was analyzed separately using robust regression method LTS with 
diagnostic tools : Mahalanobis distance, robust MCD distance, standardized robust residuals. Results of 
diagnostics of outliers and leverage points are presented in Table 1. 
 
Table 1  Diagnostics of outliers and leverage points in simple regression  
Regressor Leverage point Outlier 
GDP per capita in PPS ( 1x ) No 7 (Luxemburg) No 7 (Luxemburg), 

No 18(Estonia) 
youth educational attainment level ( 2x ), No 10 (Portugal) 

No 28 (Malta) 
- 

expenditure on research and development ( 3x ) No 3 (Finland) 
No 15 (Sveden) 

- 

expenditure on information technology ( 4x ) - - 

 
LTS regression yields the multiple regression equation in form 

  
 
 1 2 3 4ˆ 32.2414 0.1499 0.4377 0.3447 10.9252y x x x x= + − + +



 Tables 2 and 3 display results of regression diagnostics (outliers and leverage points) based on 
LTS estimates and diagnostics summary. 
 
Table 2 Robust diagnostics 
                                 The ROBUSTREG Procedure 
                                 Diagnostics 
 
                                                                     Robust             Standardized 
          Mahalanobis         MCD                    Robust 
         Obs           Distance     Distance     Leverage       Residual    Outlier   
    3           2.1203       4.6762               *               0.4658 
    5          2.7368            4.7845                 *            0.0430 
    7          3.9928        10.1284                *                      -0.4542 
            10           3.4669             4.8992                  *               0.4559 
            15          3.0743            6.8864                   *          -0.1575 
            18          2.2751            2.2826                           5.0246            *    
            25          1.5552            2.1303                          3.3943                  *   
 
Table 3 Diagnostics summary 
                                                            Diagnostics Summary 
                   Observation 

                              Type                 Proportion              Cutoff 
                                            Outlier                    0.0769               3.0000 
                                            Leverage                 0.1923               3.3382 
                                                    R-Square for LTS Estimation 
                                                           R-Square      0.9316 
 
 The comparison of results of simple regression of each separately regressors (Table 1) and results 
of multiple regression (see Table 2) shows they are fairly different because of possible masking effect. 
Observation 18 was identified as outlier by using simple regression 1y x−  but not in multiple case. 
Observation 25 was not identified as outlier in simple regression at all. So observation 5 was identified as 
leverage point only in case of multiple regression. 
 
 From possible graphical diagnostics tools a plot of the standardized residuals versus fitted values  
is presented. in Figure 1. 
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    Figure 1 

 
Figure 1 gives evidence of the presence of outlying observations, because two points fall behind 

the band. Observations 18 (Malta) and 25 (Slovinia) ) are identified as outliers. 
 



Figure 2 presented a regression diagnostic plot (a plot of the standardized residuals of robust 
regression  LTS versus the robust distance). We can see that observation 18 (Malta) and 25 (Slovenia) are 
identified as outliers and observation 3 (Finland),  5 (Ireland), 7 (Luxembourg), 10 (Portugal) and 15 
(Sveden) are identified as leverage points. In our example non observation is outlier and leverage point at 
the same time.  
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